MetaTOC stay on top of your field, easily

ROLE OF SERUM AND ION CHANNEL BLOCK ON GROWTH AND HORMONALLY‐INDUCED DIFFERENTIATION OF Spodoptera frugiperda (Sf21) INSECT CELLS

,

Archives of Insect Biochemistry and Physiology

Published online on

Abstract

A neuronal morphological phenotype can be induced in cultured Spodoptera frugiperda insect cells (Sf21) by supplementing serum‐containing media with 20‐hydroxyecdysone (20‐HE) and/or insulin. In this study, the primary objectives were to determine any role of ion channels in mediating the morphological change in cells treated with 20‐HE and insulin, and whether serum was required to observe this effect. Results showed serum‐free media also induced growth of processes in Sf21 cells, but at a lower percentage than that found previously in cells bathed in serum‐containing media. Veratridine, a sodium channel activator, increased cell survival when applied in combination with 20‐HE to Sf21 cells, and the effect was blocked by tetrodotoxin (1 μM) a known sodium channel blocker. Cobalt, a calcium channel blocker, showed significant inhibition of cell process growth when applied in combination with both 20‐HE and 20‐HE plus veratridine. Cobalt also showed significant inhibition of cell process growth when applied in combination with insulin. Thus, some type of sodium channel, as well as a mechanism for transmembrane calcium ion movement, are apparently expressed in Sf21 cells and are involved in the differentiation process. These cell lines may be used in a wide variety of endeavors, including the screening of insecticides, as well as foster basic studies of neurodevelopment and ecdysone action.