MetaTOC stay on top of your field, easily

Effects of minocycline on parameters of cardiovascular recovery after cardioplegic arrest in a rabbit Langendorff heart model

, , ,

Clinical and Experimental Pharmacology and Physiology

Published online on


Pharmacological cardiac organ protection during cardiopulmonary bypass presents an opportunity for improvement. A number of different strategies have been established to minimize ischemia/reperfusion‐induced damage to the heart. Among these, cardioplegia with histidine‐tryptophan‐ketoglutarate solution and hypothermia are the most frequently used regimen. The antibiotic minocycline has been used in this context for neuroprotection. The aim of our study was to evaluate whether the application of minocycline prior to cardioplegia exerts a protective effect on cardiac muscle. For this purpose, we investigated 6 rabbit hearts with minocycline treatment (1μmol/l) and 6 without in a Langendorff model of 90min cold cardioplegic arrest using Custodiol® followed by a 30min recovery phase. Histological analysis of cardiac muscle revealed that markers of apoptosis, oxidative and nitrosative stress were significantly lower in the minocycline group, whereas ATP‐ and MDA (malondialdehyde)‐levels and O2‐consumption were not affected by minocycline. Functionally, recovery of dP/dt(max) and dP/dt(min) was significantly faster in the minocycline group than in control. We conclude that adding minocycline to the cardioplegic solution may improve left ventricular recovery after cardioplegic arrest involving reduced pro‐apoptotic effects. This article is protected by copyright. All rights reserved.