MetaTOC stay on top of your field, easily

Sodium nitrate co-ingestion with protein does not augment postprandial muscle protein synthesis rates in older, type 2 diabetes patients

, , , , , ,

AJP Endocrinology and Metabolism

Published online on

Abstract

Introduction: The age-related anabolic resistance to protein ingestion is suggested to be associated with impairments in insulin-mediated capillary recruitment and postprandial muscle tissue perfusion. The present study investigated whether dietary nitrate co-ingestion with protein improves myofibrillar protein synthesis in older, type 2 diabetes patients. Methods: Twenty-four males with type 2 diabetes (age 72±1 y; BMI 26.7±1.4 m·kg-2; HbA1C 7.3±0.4%) received a primed continuous infusion of L-[ring-2H5]-phenylalanine and L-[1-13C]-leucine and ingested 20 g intrinsically L-[1-13C]-phenylalanine and L-[1-13C]-leucine labeled protein with (PRONO3) or without (PRO) sodium nitrate (NaNO3-; 0.15 mmol·kg-1). Blood and muscle samples were collected to assess protein digestion and absorption kinetics and postprandial muscle protein synthesis rates. Results: Upon protein ingestion, exogenous phenylalanine appearance rates increased in both groups (P<0.001) resulting in 55±2% and 53±2% of dietary protein-derived amino acids becoming available in the circulation over the 5h postprandial period in the PRO and PRONO3 group, respectively. Postprandial myofibrillar protein synthesis rates based on L-[ring-2H5]-phenylalanine did not differ between groups (0.025±0.004 vs 0.021±0.007%.h-1 over 0-2h and 0.032±0.004 vs 0.030±0.003%.h-1 over 2-5h in the PRO and PRONO3 group, respectively; ,P=0.7). No differences were observed in the incorporation of dietary protein-derived L-[1-13C]-phenylalanine into de novo myofibrillar protein at 5h (0.016±0.002 vs 0.014±0.002 MPE, in PRO and PRONO3, respectively; P=0.8). Conclusion: Dietary nitrate co-ingestion with protein does not modulate digestion and absorption kinetics, and does not further increase postprandial muscle protein synthesis rates or the incorporation of dietary protein-derived amino acids into de novo myofibrillar protein in older, type 2 diabetes patients.