MetaTOC stay on top of your field, easily

PARTICIPATION OF Y89 AND Y97 IN THE CONJUGATING ACTIVITY OF Drosophila melanogaster GLUTATHIONE S‐TRANSFERASE D3 (DmGSTD3)

,

Archives of Insect Biochemistry and Physiology

Published online on

Abstract

Drosophila melanogaster glutathione S‐transferase D3 (DmGSTD3) has a shorter amino acid sequence as compared to other GSTs known in the fruit flies. This is due to the 15 amino acid N‐terminal truncation in which normally active amino acid residue is located. The work has made use of homology modeling to visualize the arrangement of amino acid side chains in the glutathione (GSH) substrate cavity. The identified amino acids were then replaced with amino acids without functional groups in the side chains and the mutants were analyzed kinetically. Homology modeling revealed that the side chains of Y89 and Y97 were shown facing toward the substrate cavity proposing their possible role in catalyzing the conjugation. Y97A and Y89A GSH gave large changes in Km (twofold increase), Vmax (fivefold reduction), and Kcat/Km values for GSH suggesting their significant role in the conjugation reaction. The replacement at either positions has not affected the affinity of the enzyme toward 1‐chloro‐2,4‐dinitrobenzene as no significant change in values of Kmax was observed. The replacement, however, had significantly reduced the catalytic efficiency of both mutants with (Kcat/Km)GSH and (Kcat/Km)CDNB of eight‐ and twofold reduction. The recombinant DmGSTD3 has shown no activity toward 1,2‐dichloro‐4‐nitrobenzene, 2,4‐hexadienal, 2,4‐heptadienal, p‐nitrobenzyl chloride, ethacrynic acid, and sulfobromophthalein. Therefore, it was evident that DmGSTD3 has made use of distal amino acids Y97 and Y89 for GSH conjugation.