MetaTOC stay on top of your field, easily

Self-repairing design process applied to a 4-bar linkage mechanism

, , ,

Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture

Published online on

Abstract

Despite significant advances in modelling and design, mechanical systems almost inevitably fail at some point during their operative life. This can be due to a pre-existing design flaw, which is usually overcome in a revision, or more commonly due to some unexpected damage during operation. To overcome a failure during operation, a new method in designing machines or systems is proposed that creates a result, that is, resilient to both expected and unexpected failure. By shifting the focus from a detailed assessment of the underlying cause of failure to how that failure will manifest, a system becomes inherently resilient against a wide range of failure modes. The proposed process involves five steps: cause, detection, diagnosis, confirmation and correction. This is demonstrated with an application to a generic 4 bar linkage mechanism. Through this process, the system is able to return to a near perfect state even after a permanent deformation occurs in the mechanism. These results show the potential that this self-repairing design process has applications including robotics, manufacturing and other systems.