Effect of tool wear on chip formation during dry machining of Ti-6Al-4V alloy, part 1: Effect of gradual tool wear evolution
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
Published online on September 03, 2015
Abstract
Geometric features of the segmented chip have been investigated along with the volume of material removed at a cutting speed at which tool wear is characterized by the gradual development of flank wear when cutting Ti-6Al-4V alloy. The chip geometric variables varied with an increase in the volume of material removed as the combined effect of change in tool’s geometry and increase in cutting temperature. Plastic deformation dimples were observed as periodical regions on the machined surface, a row on each undeformed surface and region on the top of the slipping surface of the segmented chip when cutting with new tool; these dimples on the undeformed surface and machined surface are elongated in the direction of chip flow. All these dimples became less with an increase in the volume of material removed and almost disappeared when the chip was removed with the worn tool at the end of its life. A model of segmented chip formation process has been proposed to satisfactorily explain the formation of the plastic deformation dimples on the undeformed surface and machined surface of the segmented chip produced with a new cutting tool and the transition of chip geometry with the evolution of tool wear.