MetaTOC stay on top of your field, easily

Effect of tool wear on chip formation during dry machining of Ti-6Al-4V alloy, part 2: Effect of tool failure modes

, ,

Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture

Published online on

Abstract

Variation in the geometric and surface features of segmented chips with an increase in the volume of material removed and tool wear has been investigated at cutting speeds of 150 and 220 m/min at which the cutting tools fail due to gradual flank wear and plastic deformation of the cutting edge, respectively. Among the investigated geometric variables of the segmented chips, slipping angle, undeformed surface length, segment spacing, degree of segmentation and chip width showed the different variation trends with an increase in the volume of material removed or flank wear width, and achieved different values when tool failed at different cutting speeds. However, the chip geometric ratio showed a similar variation trend with an increase in the volume of material removed and flank wear width, and achieved the similar value at the end of tool lives at cutting speeds of both 150 and 220 m/min regardless of the different tool failure modes. Plastic deformation of the tool cutting edge results in severe damage on the machined surface of the chip and significant compression deformation on the undeformed surface of the chip.