MetaTOC stay on top of your field, easily

Model-based sensitivity analysis of machining-induced residual stress under minimum quantity lubrication

,

Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture

Published online on

Abstract

This article presents a sensitivity analysis of residual stress based on the verified residual stress prediction model. The machining-induced residual stress is developed as a function of cutting parameters, tool geometry, material properties, and lubrication conditions. Based on the residual stress predictive model, the main effects of the cutting force, cutting temperature, and residual stress are quantitatively analyzed through the cosine amplitude method. The parametric study is carried out to investigate the effects of minimum quantity lubrication parameters, cutting parameters, and tool geometry on the cutting performances. Results manifest that the cutting force and residual stress are more sensitive to the heat transfer coefficient and the depth of cut, while the cutting temperature is more sensitive to the cutting speed. Large maximum compressive residual stress is obtained under a lower flow rate of minimum quantity lubrication, small depth of cut, and the proper air–oil mixture ratio. This research can support the controlling and optimization of residual stress in industrial engineering by strategically adjusting the application parameters of minimum quantity lubrication.