Effect of focus position and shear stresses on the crack sectional shape in semiconductor laser linear cutting glass
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
Published online on January 28, 2016
Abstract
In laser-induced thermal-crack propagation, thermal stresses control the crack propagation mode and the quality of the crack surface. In this article, the 1064-nm semiconductor laser as a volumetric heat source is used for symmetry and asymmetry cutting glass. One of the problems in laser asymmetry linear cutting glass with laser-induced thermal-crack propagation is the quality of the crack surface which gets worse than that in symmetry cutting. This study lays great emphasis on analyzing the effect of the focus position and shear stresses on the crack sectional shape in semiconductor laser asymmetry linear cutting glass. This article indicates the volumetric heat flux formula, which simulates the temperature distribution from the material above or below the focal point. The heat source should be positioned above the focal point. Optical microscope photographs of the crack surface and sectional shape are obtained to examine the surface quality which is explained from the results of the stress fields using the extended finite element method simulation. In asymmetry cutting, shear stress is parallel to the crack surface and perpendicular to the cutting direction, which makes the crack surface smooth but uneven.