MetaTOC stay on top of your field, easily

A dual scheduling model for optimizing robustness and energy consumption in manufacturing systems

,

Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture

Published online on

Abstract

Manufacturing systems involve a huge number of combinatorial problems that must be optimized in an efficient way. One of these problems is related to task scheduling problems. These problems are NP-hard, so most of the complete techniques are not able to obtain an optimal solution in an efficient way. Furthermore, most of real manufacturing problems are dynamic, so the main objective is not only to obtain an optimized solution in terms of makespan, tardiness, and so on but also to obtain a solution able to absorb minor incidences/disruptions presented in any daily process. Most of these industries are also focused on improving the energy efficiency of their industrial processes. In this article, we propose a knowledge-based model to analyse previous incidences occurred in the machines with the aim of modelling the problem to obtain robust and energy-aware solutions. The resultant model (called dual model) will protect the more dynamic and disrupted tasks by assigning buffer times. These buffers will be used to absorb incidences during execution and to reduce the machine rate to minimize energy consumption. This model is solved by a memetic algorithm which combines a genetic algorithm with a local search to obtain robust and energy-aware solutions able to absorb further disruptions. The proposed dual model has been proven to be efficient in terms of energy consumption, robustness and stability in different and well-known benchmarks.