MetaTOC stay on top of your field, easily

An integrated ant colony optimization algorithm to solve job allocating and tool scheduling problem

, , , , ,

Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture

Published online on

Abstract

In this article, max–min ant colony optimization algorithm is proposed to determine how to allocate jobs and schedule tools with the objective of minimizing the makespan of processing plans in flexible manufacturing system. To expand the application range of max–min ant colony optimization algorithm, tool movement policy is selected as the running mode of flexible manufacturing system, which assumes that tools are shared among work centers and each operation is allowed to be machined by different kinds of tools. In the process of converting this scheduling problem into traveling salesman problem, disjunctive graph is modified to possess more than one path between each neighbor node. Besides providing practical methods of initializing pheromone, selecting node and calculating pheromone increment, max–min ant colony optimization algorithm employs the pheromone updating rule in max–min ant system to limit pheromone amount in a range, of which the upper and lower boundaries are updated after each iteration by formulations involving the current optimal makespan, the average number of optional tools and parameters. Finally, different sizes of processing plans are randomly generated, through which max–min ant colony optimization algorithm is proved effectively to tackle early stagnation and local convergence and thus obtains better solution than ant colony optimization algorithm and bidirectional convergence ant colony optimization algorithm.