Optimal flank wear in turning of Inconel 625 super-alloy using ceramic tool
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
Published online on April 13, 2016
Abstract
Rapid tool wear is one of the major machinability aspects of nickel-based super alloys. In this article, the effect of cutting parameters on material removal rate and tool wear of a whisker ceramic insert in turning of Inconel 625 was examined. Optical microscope and scanning electron microscope were applied to measure and study tool wear mechanism. Response surface method was used to develop a mathematical model which confirmed by experimental tests. The statistical analysis done by analysis of variance showed that depth of cut is the most effective factor on the tool wear. Experiments showed that increment of feed rate had an insignificant effect on the progress of flank wear, and it is an important controlling factor when material removal rate is considered as a desired output. Finally, optimized cutting condition is presented in this work.