MetaTOC stay on top of your field, easily

Novel metered aerosol valve

, , ,

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

Published online on

Abstract

The design and performance of a new valving mechanism for portable pressurized spraying devices is described, where the propellant in the device is a safe gas (so-called compressed gas) propellant rather than the current liquefied gases all of which are either volatile organic compounds or greenhouse gases. The valve sprays a fixed volume of liquid when the spraying actuator is depressed, as is essential used medical sprays, such as pressurized metered dose inhalers and nasal sprays, and also for automatic (wall-mounted) aerosol delivery systems for air-fresheners, insecticides and disinfectants. For ‘compressed gas’ aerosol formats, there is no flash vaporization of propellant so that pumping liquid from a metering chamber and atomization to form a spray must be achieved entirely by designing some means of using the pumping action of the gas in the container to act upon the liquid in the metering chamber. The new design utilizes a loosely fitting spherical piston element and a simple arrangement of a concentric housing and a moveable valve stem, such that liquid flow paths between the different elements are automatically closed and opened in the correct time sequence when the valve stem is depressed and released. Spraying data show excellent repeatability of liquid sprayed per pulse throughout the lifetime of device and drop sizes that are acceptable for devices such as air-fresheners and nasal sprays. The valve has only one additional component compared with liquefied gas metered valves and can be straightforwardly injection moulded. As will be explained, previous attempts failed due to expense, complexity and unreliability.