MetaTOC stay on top of your field, easily

Friction compensation using Coulomb friction model with zero velocity crossing estimator for a force controlled model in the loop suspension test rig

, ,

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

Published online on

Abstract

This paper presents a method of friction compensation for a linear electric motor in a model in the loop suspension test rig. The suspension consists of a numerically modeled spring and damper, with inputs of suspension motion. The linear motor is force controlled using a force sensor to track the output of the numerical model. The method uses a Coulomb friction model and applies a feedforward step signal when velocity zero crossing occurs. Velocity zero crossing estimation is achieved using an algorithm based on measured feedback velocity and force. Experimental results indicate reduction of force tracking error caused by Coulomb friction leading to improved test rig accuracy.