MetaTOC stay on top of your field, easily

Application of an improved dynamic time synchronous averaging method for fault diagnosis in conditions of speed fluctuation and no tachometer

, ,

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

Published online on

Abstract

Time synchronous averaging has been widely used for machinery fault diagnosis. However, it cannot reveal signal characteristics accurately in conditions of speed fluctuation and no tachometer due to the phase accumulation error. In this paper, an improved dynamic-time synchronous averaging method is proposed to extract the periodic feature signal from the fluctuated vibration signal for fault detection when no tachometer signal is available. In this method, empirical mode decomposition, dynamic time warping, and time synchronous averaging are performed on gear vibration signals to detect fault characteristic information. First, empirical mode decomposition is performed on the vibration signal and a series of intrinsic mode functions are produced. The sensitive intrinsic mode functions providing fault-related information are selected and reconstructed and the corresponding envelop signals are equal-space intercepted. Then, the phase accumulation error among the envelop signal segments is estimated by the dynamic time warping, which is further used to compensate the phase accumulation error between the intrinsic mode function segments of the reconstructed signal. Finally, the compensated intrinsic mode function segments are averaged to obtain the feature signal. Simulation analysis shows the advantages of the proposed method in extracting faulty feature signal from speed fluctuation signal without tachometer and identifying gear fault. Experiments with both normal and faulty gear were conducted and the vibration signals were captured. The proposed method is applied to identify the gear damage and the diagnosis results demonstrate its superiority than other methods.