MetaTOC stay on top of your field, easily

The role of material model in the finite element simulation of high-speed machining of Ti6Al4V

, ,

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

Published online on

Abstract

This paper provides a comprehensive assessment on some commonly used thermo-viscoplastic constitutive models of metallic materials during severe plastic deformation at high-strain rates. An hcp model previously established by us was improved in this paper to enhance its predictability by incorporating the key saturation characteristic of strain hardening. A compensation-based stress-updating algorithm was also developed to introduce the new hcp model into a finite element program. The improved model with the developed algorithm was then applied in finite element simulation to investigate the high-speed machining of Ti6Al4V. It was found that by using different material models, the simulated results of cutting forces, serrated chip morphologies, and residual stresses can be different too and that the improved model proposed in this paper can be applied to simulate the titanium alloy machining process more reliably due to its physical basis when compared with some other empirical Johnson–Cook models.