MetaTOC stay on top of your field, easily

Dynamics of a motorized spindle supported on water-lubricated bearings

,

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

Published online on

Abstract

The purpose of this paper is to investigate the dynamic performances of a motorized spindle supported on water-lubricated bearings. A modified transfer matrix method considering both of the translational and tilting dynamic coefficients of the bearings is established. The turbulent Reynolds equation is adopted and numerically solved by the perturbation method and the finite difference method, and the dynamic characteristics of the water-lubricated journal bearings are obtained; the effects of the eccentricity ratio, tilting angle, and the rotational speed on the dynamic coefficients of the water-lubricated journal bearings are analyzed. The critical speed, the dynamic stiffness of spindle nose, and unbalance response of the motorized spindle are investigated. Finally, a comparative study of rotor dynamic behaviors between the 32- and the eight-coefficient bearing models is conducted. The numerical predictions obtained by the 32-coefficient bearing models correlate well with the experimental values available in the literature.