MetaTOC stay on top of your field, easily

Electrochemical machining of 20MnCr5 alloy steel with magnetic flux assisted vibrating tool

, ,

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

Published online on

Abstract

Utilization of full potential of electrochemical machining (ECM) is not yet achieved because of its lack of accuracy, difficulty in proper tool design and control of parameters. The enhancement of performance of ECM is still a subject of concern in this modern manufacturing world. In this work, low frequency vibrating tool assisted by a magnetic flux was used as an efficient hybrid technique in ECM for improving material removal rate (MRR) and surface roughness (Ra). This paper presents a development of mathematical model correlating MRR and Ra with machining conditions such as voltage, electrolyte concentration, and inter-electrode gap. The significance of ECM process parameters has been investigated using contour plots. The inter-electrode gap (IEG) is considered slightly higher than the maximum tool amplitude that otherwise leads to tool damage. Results indicate that magnetic flux-assisted vibrating tool increases the MRR from 10% to 96%. A magnetic flux-assisted vibrating tool in ECM facilitates and drives out the sludge in the IEG to improve the machining performance. MRR is enhanced due to the movement of ions triggered by magnetic flux, which assures an increase in anodic current. A slight increase in Ra was also noted in comparison to machining with aqueous NaCl electrolyte alone.