MetaTOC stay on top of your field, easily

A novel concatenation method for generating optimal robotic assembly sequences

,

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

Published online on

Abstract

Selection of optimized assembly sequence is significantly essential to achieve cost-effective manufacturing process. This paper presents a novel efficient methodology to generate cost-effective feasible robotic assembly sequences though concatenation of parts. Part concatenation process will be followed with liaison predicate test and feasibility predicate test. A unique method called bounding box method is described to test the feasibility predicate efficiently in the computer-aided design environment. Assembly indexing technique is proposed to filter the redundant assembly subsets with high energy in order to minimize the computational time. The cost of collision free assembling operation is considered by the weight and distance traveled by the part in the assembly environment to join with the mating part. The method is successful in finding feasible optimal assembly sequence without ignoring any possible assembly sequence and found to be efficient in solving computer-aided assembly sequence generation. The correctness of the methodology is illustrated with an example.