Open-circuit fault detection and diagnosis in pulse-width modulation voltage source inverters based on novel pole voltage approach
Transactions of the Institute of Measurement and Control
Published online on August 14, 2015
Abstract
In this paper, fault detection and an isolation technique for an insulated-gate bipolar transistor open-circuit fault in a voltage source inverter are presented. This technique consists of analysing the pole voltage and providing the detection and the location of simple, simultaneous and multiple faults. Open-circuit faults can be detected by sensing the pole voltage of each leg and comparing it with the theoretical one. To improve the calculation speed and reliability of this technique and to avoid false diagnosis alarms, the fault detection and isolation scheme is based on a novel model of pole voltage taking into account the time delays due to the turn-on and turn-off process of the power switches. This method reduces the detection time and is applied for open-loop or closed-loop faults in a transient or steady state.