Continuous terminal sliding mode control with extended state observer for PMSM speed regulation system
Transactions of the Institute of Measurement and Control
Published online on February 22, 2016
Abstract
In this paper, we discuss the speed regulation problem of permanent magnet synchronous motor (PMSM) servo systems. Firstly, a continuous terminal sliding mode control (CTSMC) method is introduced for speed loops to eliminate the chattering phenomenon while still ensuring a strong disturbance rejection ability for the closed-loop system. However, in the presence of strong disturbances, the CTSMC law still needs to select high gain which may result in large steady-state speed fluctuations for the PMSM control system. To this end, an extended state observer (ESO)-based continuous terminal sliding mode control method is proposed. The ESO is employed to estimate system disturbances and the estimation is employed by the speed controller as a feed-forward compensation for disturbances. Compared to the conventional sliding mode control method, the proposed composite sliding control method obtains a faster convergence and better tracking performance. Also, by feed-forward compensating system disturbances and tuning down the gain of the CTSMC law, the fluctuation of steady-state speed of the closed-loop system is reduced while the disturbance rejection capability of the PMSM system is still maintained. Simulation and experimental results are provided to demonstrate the superior properties of the proposed control method.