A validated method for modeling anthropoid hip abduction in silico
American Journal of Physical Anthropology
Published online on April 18, 2016
Abstract
Objectives
The ability to reconstruct hip joint mobility from femora and pelves could provide insight into the locomotion and paleobiology of fossil primates. This study presents a method for modeling hip abduction in anthropoids validated with in vivo data.
Methods
Hip abduction simulations were performed on a large sample of anthropoids. The modeling approach integrates three‐dimensional (3D) polygonal models created from laser surface scans of bones, 3D landmark data, and shape analysis software to digitally articulate and manipulate the hip joint. Range of femoral abduction (degrees) and the abducted knee position (distance spanned at the knee during abduction) were compared with published live animal data.
Results
The models accurately estimate knee position and (to a lesser extent) angular abduction across broad locomotor groups. They tend to underestimate abduction for acrobatic or suspensory taxa, but overestimate it in more stereotyped taxa. Correspondence between in vivo and in silico data varies at the specific and generic level.
Conclusions
Our models broadly correspond to in vivo data on hip abduction, although the relationship between the models and live animal data is less straightforward than hypothesized. The models can predict acrobatic or stereotyped locomotor adaptation for taxa with values near the extremes of the range of abduction ability. Our findings underscore the difficulties associated with modeling complex systems and the importance of validating in silico models. They suggest that models of joint mobility can offer additional insight into the functional abilities of extinct primates when done in consideration of how joints move and function in vivo. Am J Phys Anthropol 160:529–548, 2016. © 2016 Wiley Periodicals, Inc.