A Primal–Dual Algorithm For Bsdes
Published online on June 26, 2015
Abstract
We generalize the primal–dual methodology, which is popular in the pricing of early‐exercise options, to a backward dynamic programming equation associated with time discretization schemes of (reflected) backward stochastic differential equations (BSDEs). Taking as an input some approximate solution of the backward dynamic program, which was precomputed, e.g., by least‐squares Monte Carlo, this methodology enables us to construct a confidence interval for the unknown true solution of the time‐discretized (reflected) BSDE at time 0. We numerically demonstrate the practical applicability of our method in two 5‐dimensional nonlinear pricing problems where tight price bounds were previously unavailable.