Pricing For Large Positions In Contingent Claims
Published online on September 29, 2015
Abstract
Approximations to utility indifference prices are provided for a contingent claim in the large position size limit. Results are valid for general utility functions on the real line and semi‐martingale models. It is shown that as the position size approaches infinity, the utility function's decay rate for large negative wealths is the primary driver of prices. For utilities with exponential decay, one may price like an exponential investor. For utilities with a power decay, one may price like a power investor after a suitable adjustment to the rate at which the position size becomes large. In a sizable class of diffusion models, limiting indifference prices are explicitly computed for an exponential investor. Furthermore, the large claim limit arises endogenously as the hedging error for the claim vanishes.