Forecasting Us Inflation Using Dynamic General‐To‐Specific Model Selection
Published online on February 14, 2015
Abstract
We forecast US inflation using a standard set of macroeconomic predictors and a dynamic model selection and averaging methodology that allows the forecasting model to change over time. Pseudo out‐of‐sample forecasts are generated from models identified from a multipath general‐to‐specific algorithm that is applied dynamically using rolling regressions. Our results indicate that the inflation forecasts that we obtain employing a short rolling window substantially outperform those from a well‐established univariate benchmark, and contrary to previous evidence, are considerably robust to alternative forecast periods.