Determination of Long‐run and Short‐run Dynamics in EC‐VARMA Models via Canonical Correlations
Journal of Applied Econometrics
Published online on September 16, 2015
Abstract
This article studies a simple, coherent approach for identifying and estimating error‐correcting vector autoregressive moving average (EC‐VARMA) models. Canonical correlation analysis is implemented for both determining the cointegrating rank, using a strongly consistent method, and identifying the short‐run VARMA dynamics, using the scalar component methodology. Finite‐sample performance is evaluated via Monte Carlo simulations and the approach is applied to modelling and forecasting US interest rates. The results reveal that EC‐VARMA models generate significantly more accurate out‐of‐sample forecasts than vector error correction models (VECMs), especially for short horizons. Copyright © 2015 John Wiley & Sons, Ltd.