Revealing Uncertainties in Land Change Modeling Using Probabilities
Published online on October 09, 2015
Abstract
Land change models are frequently used to analyze current land change processes and possible future developments. However, the outcome of such models is accompanied by uncertainties that have to be taken into account in order to address their reliability for science and decision‐making. While a range of approaches exist that quantify the disagreement of land change maps, the quantification of uncertainty remains a major challenge. The aim of this article is therefore to reveal uncertainties in land change modeling by developing two measures: quantity uncertainty and allocation uncertainty. We choose a Bayesian Belief Network modeling approach for deforestation in Brazil to develop and apply the two measures to the resulting probability surface. Quantity uncertainty describes the uncertainty about the correct number of cells in a land change map assigned to different land change categories and allocation uncertainty expresses the uncertainty about the correct spatial placement of a cell in the land change map. Thus, uncertainty can be quantified even in those cases where no reference data exist. Informing about uncertainty in probabilistic outcomes may be an important asset when land change projections are being used in science and decision‐making and moreover, they may also be further evaluated for other spatial applications.