MetaTOC stay on top of your field, easily

Minimizing makespan and total flow time in permutation flow shop scheduling problems using modified gravitational emulation local search algorithm

, ,

Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture

Published online on

Abstract

Permutation flow shop scheduling is a part of production scheduling problems. It allows "n" jobs to be processed on "m" machines. All the jobs are processed in all the machines, and the sequence of jobs being processed is the same in all the machines. It plays a vital role in both automated manufacturing industries and nondeterministic polynomial hard problem. Gravitational emulation local search algorithm is a randomization-based concept algorithm. It is used iteratively as the local search procedure for exploring the local optimum solution. Modified gravitational emulation local search algorithm is used for both exploring and exploiting the optimum solution for permutation flow shop scheduling problems. In this work, modified gravitational emulation local search algorithm is proposed to solve the permutation flow shop scheduling problems with the objectives such as minimization of makespan and total flow time. The computational results show that the performance solution of the proposed algorithm gives better results than the previous author’s approaches. Statistical tools are also used for finding out a relationship that exists between the two variables (makespan and total flow time) and to evaluate the performance of the proposed approach against the previous approaches in the literature.