Prediction of Renal Crystalline Size Distributions in Space Using a PBE Analytical Model: 1. Effect of Microgravity-Induced Biochemical Alterations
Published online on June 08, 2016
Abstract
An analytical Population Balance Equation model is developed and used to assess the risk of critical renal stone formation for astronauts during future space missions. The model uses the renal biochemical profile of the subject as input and predicts the steady state size distribution of the nucleating, growing, and agglomerating calcium oxalate crystals during their transit through the kidney. The model is verified through comparison with published results of several crystallization experiments. Numerical results indicate that the model is successful in clearly distinguishing between 1g normal and 1g recurrent stone-former subjects based solely on their published 24 hr urine biochemical profiles. Numerical case studies further show that the predicted renal calculi size distribution for a microgravity astronaut are closer to those of a recurrent stone-former on earth rather than to a normal subject in 1g. This interestingly implies that the increase in renal stone risk level in microgravity is relatively more significant for a normal person than a stone former. However, numerical predictions still underscore that the stone-former subject carries by far the highest absolute risk of critical stone formation during space travel.