MetaTOC stay on top of your field, easily

INSECTICIDE RESISTANCE IN THE GROUND SPIDER, Pardosa sumatrana (THORELL, 1890; ARANEAE: LYCOSIDAE)

, , , ,

Archives of Insect Biochemistry and Physiology

Published online on

Abstract

Elevated levels of insecticides detoxifying enzymes, such as esterases, glutathione S‐transferases (GSTs), and cytochrome P‐450 monooxygenases, act in the resistance mechanisms in insects. In the present study, levels of these enzymes in the insecticide‐resistant ground spider Pardosa sumatrana (Thorell, 1890) were compared with a susceptible population (control) of the same species. Standard protocols were used for biochemical estimation of enzymes. The results showed significantly higher levels of nonspecific esterases and monooxygenases in resistant spiders compared to controls. The activity of GSTs was lower in the resistant spiders. Elevated levels of nonspecific esterases and monooxygenases suggest their role in metabolic resistance in P. sumatrana. The reduced levels of total protein contents revealed its possible consumption to meet energy demands.