MetaTOC stay on top of your field, easily

A High Fat Diet (HFD) Impairs Cooling-Evoked Brown Adipose Tissue (BAT) Activation via a Vagal Afferent Mechanism

,

AJP Endocrinology and Metabolism

Published online on

Abstract

In dramatic contrast to rats on a control diet, rats maintained on a high fat diet (HFD) failed to activate brown adipose tissue (BAT) during cooling, despite robust increases in their BAT activity following direct activation of their BAT sympathetic premotor neurons in the raphe pallidus. Cervical vagotomy or blockade of glutamate receptors in the nucleus of the tractus solitarii (NTS) reversed the HFD-induced inhibition of cold-evoked BAT activity. Thus, a HFD does not prevent rats from mounting a robust, centrally-driven BAT thermogenesis; however, a HFD does alter a vagal afferent input to NTS neurons, thereby preventing the normal activation of BAT thermogenesis to cooling. These results, paralleling the absence of cooling-evoked glucose uptake in the BAT of obese humans, reveal a neural mechanism through which consumption of a HFD contributes to reduced energy expenditure, and thus to weight gain.