MetaTOC stay on top of your field, easily

Short-term and long-term effects of submaximal maternal exercise on offspring glucose homeostasis and pancreatic function

, , , , , , ,

AJP Endocrinology and Metabolism

Published online on

Abstract

Only few studies explored the effects of maternal exercise during gestation on adult offspring metabolism. We set out to test whether maternal controlled submaximal exercise maintained troughout all gestationnal periods induces persistant metabolic changes in the offspring. We used a model of 15 week-old nulliparous female Wistar rats who exercised (Trained group) before and during gestation at a submaximal intensity or remained sedentary (Control group). At weaning, male offspring from Trained dams showed reduced basal glycemia (119.7±2.4 vs 130.5±4.1 mg.dl-1, P<0.05), pancreas relative weight (3.96±0.18 vs 4.54±0.14 g.kg body weight-1, P<0.05) and islet mean area (22822±4036 vs 44669±6761 µm2, P<0.05) compared with pups from Control dams. Additionally, they had better insulin secretory capacity when stimulated by glucose 2.8 mM + arginine 20 mM, compared with offspring from Control dams (+96%, P<0.05). At 7 months of age, offspring from Trained mothers displayed altered glucose tolerance (AUC = 15285±527 vs 11898±988 mg.dl-1*120 min, P<0.05), decreased muscle insulin sensitivity estimated by the phosphorylated-PKB/total PKB ratio (-32%, P<0.05) and tended to have a reduced islet insulin secretory capacity compared with rats from Control dams. These results suggest that submaximal maternal exercise modifies short-term male offspring pancreatic function and appears to have rather negative long-term consequences on sedentary adult offspring glucose handling.