Robot workstation failure recovery based on a layout optimization
Transactions of the Institute of Measurement and Control
Published online on July 07, 2016
Abstract
This article focuses on the robot workstation layout problem and briefly discusses a recovery control strategy. Since present industrial workstations utilize a flexible manufacturing cell served by a robot, researchers in this field try to find the best method determining the physical organization of resources in available space. As solving the facility layout problem (FLP) might reduce material handling expenses, the most common objective in these approaches is to minimize the material handling costs. Our work introduces a new approach in obtaining the optimal positions of resources in a robot workstation where considerable contribution to the final layout design comes from the failure recovery data. The optimization criteria include material flow and transportation cost as the standard FLP objectives. In our approach we also consider the resource rate of failure and treatment quality as a part of the failure recovery. The optimization problems were solved with the state of the art optimization algorithm for the nonlinear optimization problems. The computational results of the study are discussed and analysed on the basis of a real industrial application. The commonly used objective function is compared to the proposed objective function extended with the failure recovery. As an important part of the failure recovery strategy, making the proper recovery decision in the workstation control design is also discussed.