MetaTOC stay on top of your field, easily

{beta}-cell dedifferentiation, reduced duct cell plasticity and impaired {beta}-cell mass regeneration in middle-aged rats.

, , , ,

AJP Endocrinology and Metabolism

Published online on

Abstract

Limitations in β-cell regeneration potential in middle-aged animals could contribute to the increased risk to develop diabetes associated with aging. We investigated β-cell regeneration of middle-aged Wistar rats in response to two different regenerative stimuli: partial pancreatectomy (Px+V) and gastrin administration (Px+G). Pancreatic remnants were analyzed 3 and 14 days after surgery. β-cell mass increased in young animals after Px and was further increased after gastrin treatment. In contrast, β-cell mass did not change after Px and after gastrin treatment in middle-aged rats. β-cell replication and individual β-cell size were similarly increased after Px in young and middle-aged animals, and β-cell apoptosis was not modified. Nuclear immunolocalization of neurog3 or nkx6.1 in regenerative duct cells, markers of duct cell plasticity, was increased in young but not in middle-aged Px rats. The pancreatic progenitor-associated transcription factors neurog3 and sox9 were upregulated in islet β-cells of middle-aged rats and were further increased after Px. The percentage of chromogranin A+/hormone- islet cells were was significantly increased in the pancreases of middle-aged Px rats. In summary, the potential for compensatory β-cell hyperplasia and hypertrophy was retained in middle-aged rats, but β-cell dedifferentiation and impaired duct-cell plasticity limited β-cell regeneration.