Conditional Inference With a Functional Nuisance Parameter
Published online on July 21, 2016
Abstract
This paper shows that the problem of testing hypotheses in moment condition models without any assumptions about identification may be considered as a problem of testing with an infinite‐dimensional nuisance parameter. We introduce a sufficient statistic for this nuisance parameter in a Gaussian problem and propose conditional tests. These conditional tests have uniformly correct asymptotic size for a large class of models and test statistics. We apply our approach to construct tests based on quasi‐likelihood ratio statistics, which we show are efficient in strongly identified models and perform well relative to existing alternatives in two examples.