Adaptation to a high protein diet progressively increases the postprandial accumulation of carbon skeletons from dietary amino acids in rats
AJP Regulatory Integrative and Comparative Physiology
Published online on August 31, 2016
Abstract
We aimed to determine whether oxidative pathways adapt to the overproduction of carbon skeletons resulting from the progressive activation of amino acid (AA) deamination and ureogenesis under a high protein (HP) diet. Ninety-four male Wistar rats, of which 54 were implanted with a permanent jugular catheter, were fed a normal protein diet for one week and were then switched to an HP diet for 1, 3, 6 or 14 days. On the experimental day, they were given their meal containing a mixture of 20 U-[15N]-[13C] AA, whose metabolic fate was followed for 4 h. Gastric emptying tended to be slower during the first 3 days of adaptation. 15N excretion in urine increased progressively during the first 6 days, reaching 29% of ingested protein. 13CO2 excretion was maximal as early as the first day, and represented only 16% of the ingested proteins. Consequently, the amount of carbon skeletons remaining in the metabolic pools 4 h after the meal ingestion progressively increased to 42% of the deaminated dietary AA after 6 days of HP diet. In contrast, 13C enrichment of plasma glucose tended to increase from 1 to 14 days of the HP diet. We conclude that there is no oxidative adaptation in the early postprandial period to an excess of carbon skeletons resulting from AA deamination in HP diets. This leads to an increase in the postprandial accumulation of carbon skeletons throughout the adaptation to an HP diet, which can contribute to the sustainable satiating effect of this diet.