MetaTOC stay on top of your field, easily

An experimental study on rotary ultrasonic machining of Macor ceramic

,

Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture

Published online on

Abstract

Macor ceramic has been well recognized as an eminent engineering material which possesses enlarged industrial usage owing to its excellent and versatile properties. However, its fruitful and economic processing is still unanswered. This article has targeted to experimentally investigate the influence of numerous process variables on machining characteristics in rotary ultrasonic machining of Macor ceramic. The impact of different input factors, namely, spindle speed, feed rate, coolant pressure, and ultrasonic power has been appraised on process responses of interest, that is, material removal rate and chipping size. The experimental plan was designed by employing response surface methodology through central composite rotatable design. The variance analysis test has also been performed with a view to observe the significance of considered parameters. Microstructure of machined samples has also been evaluated and analyzed using scanning electron microscope. This analysis has revealed and confirmed the presence of dominated brittle fracture that caused removal of material along with the thin plastic deformation in rotary ultrasonic machining of Macor ceramic. The reliability and competence of the developed mathematical model have been established with test results. The multi-response optimization of machining responses has also been done by utilizing desirability approach, and at optimized parametric setting, the obtained experimental values for material removal rate and chipping size are 0.4762 mm3/s and 0.3718 mm, respectively, with the combined desirability index value of 0.937.