cAMP dependent recruitment of acidic organelles for Ca2+ signaling in the salivary gland
Published online on September 07, 2016
Abstract
Autonomic neural activation of intracellular Ca2+ release in parotid acinar cells induces the secretion of the fluid and protein components of primary saliva critical for maintaining overall oral homeostasis. In the current study, we profiled the role of acidic organelles in shaping the Ca2+ signals of parotid acini using a variety of imaging and pharmacological approaches. Results demonstrate that zymogen granules predominate as an apically polarized population of acidic organelles that contributes to the initial Ca2+ release. Moreover, we provide evidence that indicates a role for the intracellular messenger NAADP in the release of Ca2+ from acidic organelles following elevation of cAMP. Our data are consistent with the "trigger" hypothesis where localized release of Ca2+ sensitizes canonical intracellular Ca2+ channels to enhance signals from the ER. Release from acidic stores may be important for initiating saliva secretion at low levels of stimulation and a potential therapeutic target to augment secretory activity in hypofunctioning salivary glands.