MetaTOC stay on top of your field, easily

Protective Effect of Suppressing STAT3 Activity in LPS-induced Acute Lung Injury

, , , , , , , , , , ,

AJP Lung Cellular and Molecular Physiology

Published online on

Abstract

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are diseases with high mortality. Macrophages and neutrophils are responsible for inflammatory responses in ALI and ARDS, which are characterized by excessive production of proinflammatory mediators in bronchoalveolar lavage fluid (BALF) and plasma. Aberrant activation of the JAK/STAT pathway is critical for persistent inflammation in many conditions such as infection and autoimmunity. Given the importance of the STAT3 transcription factor in activating macrophages and neutrophils, and augmenting inflammation, we investigated the therapeutic potential of inhibiting STAT3 activity using the small molecule STAT3 inhibitor, LLL12. Our results demonstrate that LPS induces STAT3 activation in macrophages in vitro and in CD45+CD11b+ cells from BALF in the LPS-induced ALI model in vivo. LLL12 treatment inhibits LPS-induced lung inflammation in the ALI model, which is accompanied by suppression of LPS-induced STAT3 activation, and an inhibition of macrophage and inflammatory cell infiltration in lung and BALF. LLL12 treatment also suppresses expression of proinflammatory genes including IL-1β, IL-6, TNF-α, iNOS, CCL2 and MHC Class II in macrophages and inflammatory cells from BALF and serum as determined by ELISA. Furthermore, hyper-activation of STAT3 in LysMCre-SOCS3fl/fl mice accelerates the severity of inflammation in the ALI model. Both pre and post-LPS administration treatment with LLL12 decreases LPS-induced inflammatory responses in mice with ALI. Importantly, LLL12 treatment attenuates STAT3 phosphorylation in human peripheral blood mononuclear cells induced by plasma from ARDS patients, which suggests the feasibility of targeting the STAT3 pathway therapeutically for ALI and ARDS patients.