MetaTOC stay on top of your field, easily

Word Adjacency Graph Modeling: Separating Signal From Noise in Big Data

, , , ,

Western Journal of Nursing Research: An International Forum for Communicating Nursing Research

Published online on

Abstract

There is a need to develop methods to analyze Big Data to inform patient-centered interventions for better health outcomes. The purpose of this study was to develop and test a method to explore Big Data to describe salient health concerns of people with epilepsy. Specifically, we used Word Adjacency Graph modeling to explore a data set containing 1.9 billion anonymous text queries submitted to the ChaCha question and answer service to (a) detect clusters of epilepsy-related topics, and (b) visualize the range of epilepsy-related topics and their mutual proximity to uncover the breadth and depth of particular topics and groups of users. Applied to a large, complex data set, this method successfully identified clusters of epilepsy-related topics while allowing for separation of potentially non-relevant topics. The method can be used to identify patient-driven research questions from large social media data sets and results can inform the development of patient-centered interventions.