Introduction to Time Series Analysis for Organizational Research: Methods for Longitudinal Analyses
Organizational Research Methods
Published online on September 29, 2016
Abstract
Organizational science has increasingly recognized the need for integrating time into its theories. In parallel, innovations in longitudinal designs and analyses have allowed these theories to be tested. To promote these important advances, the current article introduces time series analysis for organizational research, a set of techniques that has proved essential in many disciplines for understanding dynamic change over time. We begin by describing the various characteristics and components of time series data. Second, we explicate how time series decomposition methods can be used to identify and partition these time series components. Third, we discuss periodogram and spectral analysis for analyzing cycles. Fourth, we discuss the issue of autocorrelation and how different structures of dependency can be identified using graphics and then modeled as autoregressive moving-average (ARMA) processes. Finally, we conclude by describing more time series patterns, the issue of data aggregation, and more sophisticated techniques that were not able to be given proper coverage. Illustrative examples based on topics relevant to organizational research are provided throughout, and a software tutorial in R for these analyses accompanies each section.