MetaTOC stay on top of your field, easily

Tree-Based Global Model Tests for Polytomous Rasch Models

, ,

Educational and Psychological Measurement

Published online on

Abstract

Psychometric measurement models are only valid if measurement invariance holds between test takers of different groups. Global model tests, such as the well-established likelihood ratio (LR) test, are sensitive to violations of measurement invariance, such as differential item functioning and differential step functioning. However, these traditional approaches are only applicable when comparing previously specified reference and focal groups, such as males and females. Here, we propose a new framework for global model tests for polytomous Rasch models based on a model-based recursive partitioning algorithm. With this approach, a priori specification of reference and focal groups is no longer necessary, because they are automatically detected in a data-driven way. The statistical background of the new framework is introduced along with an instructive example. A series of simulation studies illustrates and compares its statistical properties to the well-established LR test. While both the LR test and the new framework are sensitive to differential item functioning and differential step functioning and respect a given significance level regardless of true differences in the ability distributions, the new data-driven approach is more powerful when the group structure is not known a priori—as will usually be the case in practical applications. The usage and interpretation of the new method are illustrated in an empirical application example. A software implementation is freely available in the R system for statistical computing.