Finite-time output feedback control for a pneumatic servo system
Transactions of the Institute of Measurement and Control
Published online on October 12, 2016
Abstract
In this paper, the position tracking control problem of pneumatic servo systems is investigated. These systems usually have high nonlinearities and unmeasurable piston velocities. Firstly, by using adding a power integrator technique, a global finite-time state feedback controller is proposed. Secondly, based on homogeneous theory, a nonlinear observer is developed to estimate the piston velocity. Finally, the corresponding output feedback controller is derived, which local finite-time stabilizes the position tracking error system. Compared with the conventional backstepping output feedback control scheme, the developed nonsmooth output feedback control scheme offers a faster convergence rate and a better disturbance rejection property. Numerical simulations illustrate the effectiveness of the proposed control scheme.