Self-correction method of out-of-plane motions in two-dimensional digital image correlation
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
Published online on October 24, 2016
Abstract
Strain monitoring is very important in the manufacturing, assembling, installation and servicing processes in both mechanical and civil engineering fields. Two-dimensional digital image correlation is a simple, efficient strain monitoring method, but one major bottleneck is the unacceptable error due to the unavoidable out-of-plane motions of the object in practice. We propose a "self-correction" method: employing the originally extracted strain values in different directions to correct the errors due to out-of-plane motions. It is applicable to many engineering applications with known relationship of strains in different directions. A uniaxial tension test was conducted to demonstrate the effectiveness and practicality of this self-correction method. Compared with other correction methods, this method is not only simpler but also more efficient in correcting errors due to the lens distortion caused by self-heating. Both the experiment and theoretical analyses demonstrate that this self-correction method maintains the high accuracy of the digital image correlation method.