MetaTOC stay on top of your field, easily

Aggregation Bias and the Analysis of Necessary and Sufficient Conditions in fsQCA

Sociological Methods & Research

Published online on

Abstract

Fuzzy-set qualitative comparative analysis (fsQCA) has become one of the most prominent methods in the social sciences for capturing causal complexity, especially for scholars with small- and medium-N data sets. This research note explores two key assumptions in fsQCA’s methodology for testing for necessary and sufficient conditions—the cumulation assumption and the triangular data assumption—and argues that, in combination, they produce a form of aggregation bias that has not been recognized in the fsQCA literature. It also offers a straightforward test to help researchers answer the question of whether their findings are plausibly the result of aggregation bias.