Citrulline directly modulates muscle protein synthesis via the PI3K/ MAPK/4E-BP1 pathways: Evidence from in vivo, ex vivo and in vitro studies
AJP Endocrinology and Metabolism
Published online on November 08, 2016
Abstract
Citrulline (CIT) is an endogenous amino acid produced by the intestine. Recent literature consistently shows CIT to be an activator of muscle protein synthesis (MPS). However, the underlying mechanism is still unknown. Our working hypothesis was that CIT might regulate muscle homeostasis directly through the mTORC1/PI3K/MAPK pathways. Because CIT undergoes both inter-organ and intra-organ trafficking and metabolism, we combined three approaches: in vivo, ex vivo and in vitro. Using a model of malnourished aged rats, CIT supplementation activated the phosphorylation of S6K1 and 4E-BP1 in muscle. Interestingly, the increase in S6K1 phosphorylation was positively correlated (p < 0.05) with plasma CIT concentration. In a model of isolated incubated skeletal muscle from malnourished rats, CIT enhanced MPS (from 30 to 80% CIT vs. Ctrl, p < 0.05) and the CIT effect was abolished in the presence of wortmannin, rapamycin and PD98059. In vitro, on myotubes in culture, CIT led to a 2.5-fold increase in S6K1 phosphorylation and a 1.5-fold increase in 4E-BP1 phosphorylation. Both rapamycin and PD98059 inhibited the CIT effect on S6K1, whereas only LY294002 inhibited the CIT effect on both S6K1 and 4E-BP1. These findings show that CIT is a signaling agent for muscle homeostasis, suggesting a new role of the intestine in muscle mass control.