MetaTOC stay on top of your field, easily

Impact of Cryopreservation on Caprine Fetal Adnexa Derived Stem Cells and Its Evaluation for Growth Kinetics, Phenotypic Characterization, and Wound Healing Potential in Xenogenic Rat Model

, , , , , , , , , , ,

Journal of Cellular Physiology

Published online on

Abstract

This study was conducted to know the impact of cryopreservation on caprine fetal adnexa derived mesenchymal stem cells (MSCs) on the basic stem cell characteristics. Gravid caprine uteri (2–3 months) were collected from local abattoir to derive (amniotic fluid [cAF], amniotic sac [cAS], Wharton's jelly [cWJ], and cord blood [cCB]) MSCs and expanded in vitro. Cells were cryopreserved at 3rd passage (P3) using 10% DMSO. Post‐thaw viability and cellular properties were assessed. Cells were expanded to determine growth kinetics, tri‐lineage differentiation, localization, and molecular expression of MSCs and pluripotency markers; thereafter, these cells were transplanted in the full‐thickness (2 × 2cm2) rat skin wound to determine their wound healing potential. The post‐thaw (pt) growth kinetics study suggested that cWJ MSCs expanded more rapidly with faster population doubling time (PDT) than that of other fetal adnexa MSCs. The relative mRNA expression of surface antigens (CD73, CD90, and CD 105) and pluripotency markers (Oct4, KLF, and cMyc) was higher in cWJ MSCs in comparison to cAS, cAF, and cCB MSCs post‐thaw. The percent wound contraction on 7th day was more than 50% for all the MSC‐treated groups (pre and post‐thaw), against 39.55% in the control group. On day 28th, 99% and more wound contraction was observed in cAF, cAF‐pt, cAS‐pt, cWJ, cWJ‐pt, and cCB, MSCs with better scores for epithelization, neovascularization, and collagen characteristics at a non‐significant level. It is concluded that these MSCs could be successfully cryopreserved without altering their stemness and wound healing properties. J. Cell. Physiol. 232: 2186–2200, 2017. © 2016 Wiley Periodicals, Inc. The present study showed that cWJ MSCs have better pluripotency and post thaw survivability than other fetal adnexa derived MSCs and all the adnexa derived MSCs were found to heal excision wound faster and quality of healed wound was also better than control, indicating that these cells can be cryopreserved and may be used for regenerative cell therapy.