The critical role of microbiota within cecal crypts on the regenerative capacity of the intestinal epithelium following surgical stress
AJP Gastrointestinal and Liver Physiology
Published online on December 15, 2016
Abstract
Cecal crypts represent a unique niche that are normally occupied by the commensal microbiota. Due to their density and close proximity to stem cells, microbiota within cecal crypts may modulate epithelial regeneration. Here it is demonstrated that surgical stress, a process that invariably involves a short period of starvation, antibiotic exposure and tissue injury, results in cecal crypt evacuation of their microbiota. Crypts devoid of their microbiota display pathophysiological features characterized by abnormal stem cell activation as judged by Lgr5 staining, abnormal stem cell distribution with cells migrating toward the tips of the crypts, and an increase in TUNEL positive cells. In addition, crypts are devoid of their microbiota also display loss of their regenerative capacity as assessed by their ability to form organoids ex vivo. When a four (4) member human pathogen community isolated from the stool of a critically ill patient is introduced into the cecum of mice with empty crypts, crypts become occupied by the introduced pathogens and develop persistent and abnormal Lgr5 expression and severe crypt cell disruption. Fecal microbiota transplantation restores the cecal crypts' microbiota, normalizes the Lgr5 pattern, and reestablishes its regenerative capacity. Taken together, these findings define an emerging role for the microbiota within cecal crypts to maintain epithelial cell homeostasis in a manner that may enhance recovery in response to the physiological stress imposed by the process of surgery.