The effects of exogenous desmopressin on a model of heat stress nephropathy in mice
Published online on December 21, 2016
Abstract
Background: Recurrent heat stress and dehydration have recently been shown experimentally to cause chronic kidney disease (CKD). One potential mediator may be vasopressin, acting via the type 2 vasopressin receptor (V2 receptor). We tested the hypothesis that desmopressin accelerates CKD in mice subjected to heat stress and recurrent dehydration. Methods: Recurrent exposure to heat with limited water availability was performed in male mice over a 5 week period, with one group receiving desmopressin twice daily and the other group received vehicle. Two additional control groups were not exposed to heat or dehydration and received vehicle or desmopressin. The effects of the treatment on renal injury was assessed. Results: Heat stress and recurrent dehydration induced functional changes (albuminuria, elevated urinary NGAL), glomerular changes (mesangiolysis, matrix expansion) and tubulointerstitial changes (fibrosis, inflammation). Desmopressin also induced albuminuria, glomerular changes and tubulointerstitial fibrosis in normal animals, and also exacerbated injury in mice with heat stress nephropathy. Both heat stress and/or desmopressin were also associated with activation of the polyol pathway in the renal cortex, likely due to increased interstitial osmolarity. Conclusions: Our studies document both glomerular and tubulointerstitial injury and inflammation in heat stress nephropathy, and may be clinically relevant to the pathogenesis of Mesoamerican Nephropathy. Our data also suggest that vasopressin may play a role in the pathogenesis of the renal injury of heat stress nephropathy, likely via a V2-receptor dependent pathway.