Influence of acute stress on response inhibition in healthy men: An ERP study
Published online on February 07, 2017
Abstract
The current study investigated the influence of acute stress and the resulting cortisol increase on response inhibition and its underlying cortical processes, using EEG. Before and after an acute stressor or a control condition, 39 healthy men performed a go/no‐go task while ERPs (N2, P3), reaction times, errors, and salivary cortisol were measured. Acute stress impaired neither accuracy nor reaction times, but differentially affected the neural correlates of response inhibition; namely, stress led to enhanced amplitudes of the N2 difference waves (N2d, no‐go minus go), indicating enhanced response inhibition and conflict monitoring. Moreover, participants responding to the stressor with an acute substantial rise in cortisol (high cortisol responders) showed reduced amplitudes of the P3 of the difference waves (P3d, no‐go minus go) after the stressor, indicating an impaired evaluation and finalization of the inhibitory process. Our findings indicate that stress leads to a reallocation of cognitive resources to the neural subprocesses of inhibitory control, strengthening premotor response inhibition and the detection of response conflict, while concurrently diminishing the subsequent finalization process within the stream of processing.